A New Characterization of Generalized Weighted Composition Operators from the Bloch Space into the Zygmund Space

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Characterization of Differences of Generalized Weighted Composition Operators from the Bloch Space into Weighted–type Spaces

In this paper, we give a new characterization for the boundedness and compactness of differences of generalized weighted composition operators from the Bloch space into weightedtype spaces. Moreover, we give some estimates for the essential norm of these operators. Mathematics subject classification (2010): 30D45, 47B38.

متن کامل

Weighted Composition Operators from the Lipschitz Space into the Zygmund Space

In this work, we give several characterizations of the bounded and the compact weighted composition operators from the Lipschitz space into the Zygmund space. Mathematics subject classification (2010): Primary 47B33; secondary 30H05.

متن کامل

Composition Operators from the Bloch Space into the Spaces Qt

Suppose that ϕ(z) is an analytic self-map of the unit disk ∆. We consider the boundedness of the composition operator C ϕ from Bloch space Ꮾ into the spaces Q T (Q T ,0) defined by a nonnegative, nondecreasing function T (r) on 0 ≤ r < ∞. 1. Introduction. Let ∆ = {z : |z| < 1} be the unit disk of complex plane C and let H(∆) be the space of all analytic functions in ∆. For a ∈ ∆, Green's functi...

متن کامل

Weighted differentiation composition operators from the logarithmic Bloch space to the weighted-type space

The boundedness of the weighted differentiation composition operator from the logarithmic Bloch space to the weighted-type space is characterized in terms of the sequence (zn)n∈N0 . An asymptotic estimate of the essential norm of the operator is also given in terms of the sequence, which gives a characterization for the compactness of the operator.

متن کامل

Generalized Weighted Composition Operators From Logarithmic Bloch Type Spaces to $ n $'th Weighted Type Spaces

Let $ mathcal{H}(mathbb{D}) $ denote the space of analytic functions on the open unit disc $mathbb{D}$. For a weight $mu$ and a nonnegative integer $n$, the $n$'th weighted type space $ mathcal{W}_mu ^{(n)} $ is the space of all $fin mathcal{H}(mathbb{D}) $ such that $sup_{zin mathbb{D}}mu(z)left|f^{(n)}(z)right|begin{align*}left|f right|_{mathcal{W}_...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Function Spaces and Applications

سال: 2013

ISSN: 0972-6802,1758-4965

DOI: 10.1155/2013/925901